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The nature of the eigenstates and the effects on the superconducting-to-normal phase boundary
in a two-dimensional random superconducting network are examined by finite-size scaling
transfer-matrix calculations within the mean-field Ginzburg-Landau theory of second-order phase

transitions.

Results for a site-diluted square lattice are presented and a rich structure in the

mobility-edge trajectory is obtained. The critical exponent for the slope of the critical field on
(p —pc) is calculated and compared with previous estimates.

In recent years, considerable attention has been devoted
to the study of flux quantization effects, which have
theoretically predicted' ”3 and experimentally ob-
served,*”7 in arrays of superconducting honeycomb,*
square,” self-similar,® and quasicrystal’ networks. The
main feature of this quantization effect is the oscillation of
the superconducting transition temperature T.(H) as a
function of the external magnetic field H. For example, in
a perfect periodic network, T.(H) exhibits singularities at
rational values of the reduced flux ¢/¢o, where ¢ =HL? is
the magnetic flux through the unit cell of the supercon-
ducting network and ¢o=hc/2e =2.07x10 ~7G cm? is the
superconducting flux quantum. It was recognized® several
years ago that such a superconducting network is an ideal
experimental system for studying the effects of frustration
in a well-characterized system. In this system, the re-
duced flux is the frustration parameter and can be
changed continuously. The mean-field Ginzburg-Landau
theory of second-order phase transitions, as developed by
de Gennes' and Alexander,? provides a very accurate
description of these phenomena. Most of the research
effort so far has been concentrated on understanding the
superconducting-to-normal phase boundary in various
periodic networks. Only very recently some attempts have
been made to experimentally®® and theoretically®!° cal-
culate the superconducting phase boundary for random
superconducting networks. The expected dimensionality
crossover between the homogeneous and fractal regimes
was not observed® in the random square-lattice percola-
tion networks. Furthermore, the interesting problem of
the superconducting phase below 7, has not been ad-
dressed!! beyond the mean-field approximation.

In this Rapid Communication, we study the
superconducting-to-normal (SN) phase boundary for a
random percolating superconducting network. As expect-
ed, the structure of the phase boundary curve T.(H) is
washed out, due to the randomness of the percolation net-
works. By examining the nature of the eigenstates for
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different values of the concentration of the sites present, p,
as a function of ¢/¢o, we are able to obtain bounds for the
SN phase boundary. A very interesting mobility-edge tra-
jectory is found for the metal-to-insulator transition,
which may be observable experimentally.

To examine the problem of the superconducting net-
works theoretically, we study the linearized Ginzburg-
Landau (GL) equations appropriate near the phase
boundary. For a network with current conservation at the
nodes or lattice points,l —3.10

—AY cot(8;;) + X Ae™/sin(6,) =0, )
J J

where A; is the order parameter at node or site i, 8;; =I,-j/6
is the distance between nodes divided by the coherence
length, and y;; =(27/¢0) f{ A-dl is the circulation of the
vector potential A along the link ij. Equation (1) is, in
general, difficult to solve but becomes more tractable for
simple geometries. For regular networks which have links
of equal length, i.e., /;; =L, the sin(6;;) term can be re-
moved from the sum in Eq. (1), and the problem reduces
to that of an electron on a similar lattice in a magnetic
field.!=>12
For simple lattices, Eq. (1) can be written as

—A;z;C0s

Z; X
+ X Aje'T=2a;, ()
=

where the sum j is over the z; nearest neighbors of node
site i and A is the eigenvalue, which for the superconduct-
ing networks is equal to zero. Notice that Eq. (2) is very
similar to the tight-binding Hamiltonian of an electronic
problem. However, here we are most interested in the
zero-eigenvalue case and the diagonal disorder depends on
z; and cos(L/E), which is taken to be equal to E. In this
particular case, the off-diagonal term exp(iy;;) is correlat-
ed with the diagonal through the field H. One way in
which disorder can be introduced into Eq. (2) is by ran-
domly removing (1 —p) of the sites, i.e., a fraction p of
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38 METAL-INSULATOR TRANSITION IN RANDOM . ..

the sites or nodes are present. A link ij is present if only
both nodes i and j are present. To make the connection®
with the superconducting T.(H), it is usually assumed
that &=¢&y/v1—t, where t=T/T.(0) and, therefore,
L/E=LJ( —1)/&. T.(H) can then be determined from
the largest value of E for which Eq. (2) has a solution for
A =0. In order to find the eigenvalues and eigenvectors A;
for Eq. (2), one can either diagonalize the Hamiltonian
for a given H and p, or use the transfer-matrix method
and finite-size scaling.!>'* This latter method is useful,
since it can be used to study the nature of the different
eigenstates A;, in particular, whether they are localized or
extended. Direct diagonalization or a tridiagonalization
procedure could be also used to study the nature of eigen-
states, but is known not to give very accurate results.

In the transfer-matrix method,!>!* one considers cou-
pled one-dimensional (1D) systems. Each 1D system is
described by a tight-binding Hamiltonian of the same
form as Eq. (2). The corresponding sites of the nearest-
neighbor 1D system are coupled together by an interchain
matrix element 7;;¢'” that depends on the strength of the
magnetic field H and concentration p. In particuiar, we
choose a gauge such that A is parallel to the 1D chains
and t,-£ =1 if both sites are present, ¢ if one site is missing,
and ¢ if both sites are missing. This is clearly seen in Fig.
1, where a random percolating network is shown with the
identifications of the different parameters. In the present
work, M chains are coupled together into a 2D array with
interchain coupling #; and z;=2;t;;. The additional
term ¢;; is necessary to ensure that the lattice is connected.
For the M connected chains of length NV, one determines
the largest localization length A, as N— oo, From a plot
of Ly vs M, one can obtain the localization properties of
the system.'>'* In particular, by studying the scaling
plots Ay /M vs M, one obtains a reasonable estimate of the
mobility-edge trajectory. Exactly at the mobility edge, we
also find Ap/M =0.6 in agreement with previous
work, '>14 while for extended and localized states we have
that Ap/M vs M increases or decreases, respectively. For
our studies here, we used M equal to 2 through 64 with N
up to 10000, and e=10 ~*. We found that our results are
independent of € provided that ¢ $10 73,

In addition for a given H and p, we numerically ' calcu-
late the density of states (DOS) to obtain the positions

FIG. 1. Random percolating superconducting network with
the filled circle representing the fraction p of the sites present
equal to 75%. The nearest-neighbor matrix element ¢;
=1 (—@), ¢ @), or ¢2 (---) if both, one, or zero sites are
present, respectively.
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and widths of bands and gaps. With the DOS known, the
finite-size scaling analysis is used to determine the nature
of the eigenstates in the bands.

At p=1, we have z; =4 and Eq. (2) with A =0 can be
transformed to the “incommensurate” 1D tight-binding
model. Its energy spectrum has been studied in great de-
tail by Hofstadter.'? The phase boundary of the super-
conductive perfect square lattice can be easily obtained. '
In order to check our numerical methods, we have also
calculated for p =1 the phase boundary T.(H). As can
be seen from Fig. 2, the largest value of E, which satisfies
Eq. (2) for A =0 and is assumed to be proportional to the
critical temperature T.(H), is plotted vs ¢/¢o; excellent
agreement is found with previous works.'%!2 Along the y
axis, we plot E=cos(L/£), which is usually related to

T.(H) through the relation &=£¢//1—T/T.(0), and
therefore L2{1 —[T.(H) /T.(0)1}/&4 =[arcos(E)]1% The
T.(H) shows all the interesting oscillations expected at
rational values of ¢/¢o. The phase boundary T, (H) is nu-
merically obtained with three independent methods which
quantitatively agree with each other: (1) by a partial di-
agonalization of 10000x 10000 matrix for a given H, and
p to find the largest value of E for which A =0, (2) by the
numerical calculation of DOS (Ref. 15) from which we
can follow the behavior of the band edge of the highest
band, and (3) by calculating the localization length with
the finite-size scaling transfer-matrix techniques.

For a site-diluted square lattice network (i.e.,
pc <p <1, where p. =0.59 is the site percolation thresh-
old for the square lattice), we find the structure seen in E
for p =1 washed out even when p =0.90 as seen in Fig. 2.
Notice, when p=0.80, all structure in E has disap-
peared.'® Below we will show, after examining the nature
of the eigenstates A; which correspond to this particular
value of E, that this simple mapping from E to T.(H)
which was discussed above for p=1 is not correct for
p <1 and determination of the phase boundary is actually
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FIG. 2. Phase boundary of the percolating superconducting
square network for site concentrations p =1, 0.98, 0.90, and
0.80. The y axis represents the largest eigenstate E, while the x
axis represents ¢/¢o, where ¢ =L 2H is the magnetic flux through
the unit cell and ¢o is the superconducting flux quantum.
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more complex.

We have undertaken a systematic study of the extended
or localized nature for all the eigenstates as a function of
E. We found that the eigenstate corresponding to the
largest value of E is not always extended, as has been im-
plicitly assumed, in determining the phase boundary
T.(H) in Fig. 2. Obviously if the A; are not extended, the
solution with the largest eigenvalue cannot correspond to
a superconducting state as occurs for p=1. For
1> p > p. there exists a mobility edge between localized
and extended states. The actual value of 7. (H) must then
depend on the solution of the nonlinear Landau-Ginzburg
equations and cannot be determined from the linearized
equations. Because the nonlinear term can couple
different localized eigenstates, the mobility-edge trajecto-
ry found here can only be a lower bound of T.(H).!” In
Fig. 3, we show whether the eigenfunctions are either lo-
calized or extended for several values of p and ¢/¢o from
which one can easily determine the upper and lower limits
of T.(H). The energy at which the first solution appears
gives the upper bound, while the energy for the first ex-
tended solution gives the lower bound. The p =1 results
agree very well with those of Ref. 12. For example, for
¢/po=7%+ and p=1.0, we have three bands. However,
since we only show E >0, only the one bands around
E =0.8 and half of the band around E =0 is shown. The
eigenstates for p =1 are all extended. Notice that as p de-
creases for a given ¢/¢o, we first loose some of the gaps
that were present at p =1 and then localized states begin
to appear due to the site dilution. As the disorder in-
creases, we find that all the states become localized. This
is the case for p =0.60, where for all the magnetic field
strengths studied, the eigenstates for all E are localized.
However, for intermediate concentrations p, a rich and in-
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teresting behavior is obtained. Notice that for ¢/¢o= %
and E =0.3, there is no eigenstate at this energy, for p =1
case, the state is in a gap, while for p =0.90 a localized
state exists. It is very interesting that as disorder in-
creases, we recover extended states at E =0.30 for
p=0.80 and p =0.70. This is contrary to one’s usual in-
tuition from which one expects localized states to appear
as disorder increases. This unusual behavior occurs for
the disordered superconducting network, because there is
a competition between the disorder and the strength of
magnetic field in determining the nature of the eigen-
states. By diluting the system, we of course introduce
more disorder, but the magnetic flux plaquettes rearrange
themselves in such a way that an extended eigenstate
remains. It would be very interesting to check this rich
structure of mobility-edge trajectories experimentally.
For a given value of ¢/¢o and given p, it might be possible
to observe a metal-to-insulator-type transition by chang-
ing E which effectively means changing temperature. For
our particular superconductivity model, given by Eq. (2),
the classical and the quantum percolation thresholds are
exactly the same p for H =0. This is due to the fact that
the site energy z; cos(L/£) is proportional to the number
of nearest neighbors. Therefore, for H =0 the
E =cos(I/£) =1 eigenstate is always extended provided
that p = p. =0.59.

Another interesting consequence of our results is that
we can determine how the slope of the critical field de-
pends on p—p. (dH./dT)r.~(p—p.) ~* for p>p..
For percolation, the linearized GL theory predicts that the
critical exponent k =v6, where v is the correlation length
E~(p—p.) " exponent and @ is the anomalous diffusion
exponent.® Taking v=% and 6=0.8 gives k=1.06 in
reasonable agreement with the numerical work on linear-
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FIG. 3. The concentration dependence of the eigenstates E for different magnetic fields ¢/¢o = +, %, 5, and +. The symbols F
and L represent extended and localized states, respectively. For a given p, (——), (#H#), and (blank spaces) represent localized, ex-

tended, and no states, respectively.
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ized GL theory of Ref. 10 who found k =0.93. Experi-
mental values of kK =0.57 and k =1.06 are given in Refs.
18 and 8 respectively, while Ref. 3 gives k =0.87. To
compare our results with previous work on random per-
colating networks, we have analyzed the initial part of
#/00=<0.1 of the phase boundary with the formula
He(T) =A(1 —1)¢o/E§, where t=T/T.. Therefore,
A=(£8T./90)(dH o/dT)r,. In Fig. 4, we plot A as a
function of p — p. on logarithmic axis. Notice that 4 ap-
pears to vary with p for wide ranges of p —p.. In Fig. 3,
the triangles represent the largest value of E for which
Eq. (2) has a solution for A =0, while the filled circles rep-
resent the eigenstate E (or temperature T.) at which the
first extended state appears as we reduce E. The extended
curve is closer to the experiments.® Notice that the ex-
ponent k for the extended curve is equal to 0.84 while for
the band-edge curve k =2.50 which is much higher than
the numerical estimations of Ref. 10 which give a value of
k =0.93. The open circles, are the experimental data for
A vs p—p. obtained by Ref. 8. Notice that the experi-
mental data lie in between the two numerical predictions,
which only give bounds to the real T.(H) suggesting that
the agreement for the value of k given in Ref. 8 with the
earlier prediction'® of the linearized GL theory was for-
tuitous. To determine the actual 7.(H), the nonlinear
terms which have been neglected in the present mean-field
treatment have to be taken into account.!” This break-
down of mean-field theory and the importance of non-
linear terms in determining 7.(H) probably also explains
the lack of dimensional crossover which was theoretically
expected but not observed® in percolating superconducting
networks.

In conclusion, we showed that the linearized GL theory
can not be used to determine the SN phase boundary for
disordered systems. It can only be used to bound the
phase boundary. In cases of weak disorder, it probably
gives a very good estimate of T.(H), but cannot be trusted
for strong disorder. Instead, it is necessary to take ac-
count of the nonlinear terms which have been neglected in
the linearized theory. We found that the cusplike struc-
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FIG. 4. Log-log plot of parameter A ~dH.2/dT vs p — p. for
the band edge (A) and first extended states (®) from our nu-

merical calculations for site percolation. The experimental re-
sults (O) of Ref. 8 for bond percolation are also presented.

tures present at p =1 for T.(H) vs H are washed out for
p =0.90. The extended or localized nature of the eigen-
states was also examined. A rich and interesting structure
of mobility-edge trajectories was obtained. Finally, the
critical exponent of the upper critical field was calculated
and found to be k£ > 0.84, consistent with the experimen-
tal measurements.®
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